Sustainable alternative feed for aquaculture: state of the art and future perspective

Document Type : Original Article


1 Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

2 STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063 Guangdong Province, China

3 Department of Fisheries and Aquaculture, College of Forestry and Fisheries, Joseph Sarwuan Tarka University (formerly the Federal University of Agriculture Makurdi), Makurdi P.M.B. 2373 Makurdi, Nigeria

4 Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China


With aquaculture intensifying to meet future demands and forage fish stocks nearing their ecological limits, fed aquaculture must continue to scale down reliance on fishmeal and fish oil to safeguard the sustainable development of the sector. Sustainable alternative feed ingredients for the production of aquafeeds are paramount. Apart from terrestrial plant-based and animal-based ingredients, fishery and aquaculture by-products and insects are presently the most viable alternative sources. Food waste, seaweed, and microbial sources show promise; however, they are still limited due to cost, processing, and scalability issues. Low-trophic marine animals demonstrate immense potential as sustainable and adequately nutritious substitute ingredients for fishmeal and fish oil. Societal shifts in diets to non-fed aquaculture
products and advancements in integrated multi-trophic aquaculture systems offer additional future avenues of interest. In this review, we explore the current list of sustainable ingredients that have demonstrated promise as a replacement for fishmeal and fish oil in aquafeeds.

Graphical Abstract

Sustainable alternative feed for aquaculture: state of the art and future perspective


  • Fishery and aquaculture byproduct inclusion in aquafeeds can enhance the growth, immunity, and flesh color of aquatic animals.
  • The use of fishmeal and fish oil (FMFO) has been recognized as the leading unsustainable factor in aquaculture.
  • Sustainably produced insect meals are rich in protein and are comparable to fishmeal in essential amino acids.
  • Microalgae biomass can accumulate high levels of protein and lipids, along with several value-added components that benefit fish health and quality.
  • 100% replacement of fishmeal with marine amphipod meal in the diet of juvenile marine fish did not cause any negative impacts.


Aas, T. S., Grisdale-Helland, B., Terjesen, B. F., & Helland, S. J. (2006). Improved growth and nutrient utilisation in Atlantic salmon (Salmo salar) fed diets containing a bacterial protein meal. Aquaculture259(1-4), 365-376.
Aasen, I. M., Sandbakken, I. S., Toldnes, B., Roleda, M. Y., & Slizyte, R. (2022). Enrichment of the protein content of the macroalgae Saccharina latissima and Palmaria palmataAlgal Research65, 102727.
Abdel-Warith, A. W. A., Younis, E. S. M., & Al-Asgah, N. A. (2016). Potential use of green macroalgae Ulva lactuca as a feed supplement in diets on growth performance, feed utilization and body composition of the African catfish, Clarias gariepinusSaudi Journal of Biological Sciences23(3), 404-409.
Achionye-Nzeh, C. G., & Ngwudo, O. S. (2021). Growth response of Clarias anguillaris fingerlings fed larvae of Musca domestica and soyabean diet in the laboratory. Bioscience Research Journal15(3).
Adarme-Vega, T. C., Lim, D. K., Timmins, M., Vernen, F., Li, Y., & Schenk, P. M. (2012). Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production. Microbial cell factories11(1), 1-10.
Ahmad, A., W. Hassan, S., & Banat, F. (2022). An overview of microalgae biomass as a sustainable aquaculture feed ingredient: food security and circular economy. Bioengineered13(4), 9521-9547.
Ahmad, M. T., Shariff, M., Md. Yusoff, F., Goh, Y. M., & Banerjee, S. (2020). Applications of microalga Chlorella vulgaris in aquaculture. Reviews in Aquaculture12(1), 328-346.
Ahn, C. B., Cho, Y. S., & Je, J. Y. (2015). Purification and anti-inflammatory action of tripeptide from salmon pectoral fin byproduct protein hydrolysate. Food Chemistry168, 151-156.
Alberts-Hubatsch, H., Jiménez-Prada, P., Beermann, J., & Slater, M. J. (2019a). Amphipod meal in formulated diets for juvenile turbot Psetta maxima.
Alberts-Hubatsch, H., Slater, M. J., & Beermann, J. (2019b). Effect of diet on growth, survival and fatty acid profile of marine amphipods: implications for utilisation as a feed ingredient for sustainable aquaculture. Aquaculture Environment Interactions11, 481-491.
Albrektsen, S., Kortet, R., Skov, P. V., Ytteborg, E., Gitlesen, S., Kleinegris, D., ... & Øverland, M. (2022). Future feed resources in sustainable salmonid production: A review. Reviews in Aquaculture.
Alfiko, Y., Xie, D., Astuti, R. T., Wong, J., & Wang, L. (2022). Insects as a feed ingredient for fish culture: Status and trends. Aquaculture and Fisheries7(2), 166-178.
Al-Hafedh, Y. S., & Alam, A. (2013). Replacement of fishmeal by single cell protein derived from yeast grown on date (Phoenix dactylifera) industry waste in the diet of Nile Tilapia (Oreochromis niloticus) fingerlings. Journal of Applied Aquaculture25(4), 346-358.
Allegretti, G., Schmidt, V., & Talamini, E. (2017). Insects as feed: species selection and their potential use in Brazilian poultry production. World's Poultry Science Journal73(4), 928-937.
Alloul, A., Wille, M., Lucenti, P., Bossier, P., Van Stappen, G., & Vlaeminck, S. E. (2021). Purple bacteria as added-value protein ingredient in shrimp feed: Penaeus vannamei growth performance, and tolerance against Vibrio and ammonia stress. Aquaculture530, 735788.
Al-Ruqaie, I. M. (2007). Feed on Growth and Feed Utilization of Tilapia (Oreochronnis niloticus) in Saudi Arabia. Pakistan Journal of Biological Sciences10(19), 3248-3253.
Altomare, A. A., Baron, G., Aldini, G., Carini, M., & D'Amato, A. (2020). Silkworm pupae as source of high‐value edible proteins and of bioactive peptides. Food science & nutrition8(6), 2652-2661.
Ambigaipalan, P., & Shahidi, F. (2017). Bioactive peptides from shrimp shell processing discards: Antioxidant and biological activities. Journal of Functional Foods34, 7-17.
Ang, C. Y., Yong, A. S. K., Azad, S. A., Lim, L. S., Zuldin, W. H., & Lal, M. T. M. (2021). Valorization of Macroalgae through Fermentation for Aquafeed Production: A Review. Fermentation7(4), 304.
Angell, A. R., Angell, S. F., de Nys, R., & Paul, N. A. (2016). Seaweed as a protein source for mono-gastric livestock. Trends in food science & technology54, 74-84.
Anh, N. T. N., Hai, T. N., & Hien, T. T. T. (2018). Effects of partial replacement of fishmeal protein with green seaweed (Cladophora spp.) protein in practical diets for the black tiger shrimp (Penaeus monodon) postlarvae. Journal of Applied Phycology30(4), 2649-2658.
Arumugam, N., Chelliapan, S., Kamyab, H., Thirugnana, S., Othman, N., & Nasri, N. S. (2018). Treatment of wastewater using seaweed: a review. International Journal of Environmental Research and Public Health15(12), 2851.
Arvanitoyannis, I. S., & Kassaveti, A. (2008). Fish industry waste: treatments, environmental impacts, current and potential uses. International journal of food science & technology43(4), 726-745.
Ashour, M., Abo-Taleb, H. A., Hassan, A. K. M., Abdelzaher, O. F., Mabrouk, M. M., Elokaby, M. A., ... & Mansour, A. T. (2021). Valorization use of amphipod meal, Gammarus pulex, as a fishmeal substitute on growth performance, feed utilization, histological and Histometric indices of the gut, and economic revenue of Grey mullet. Journal of Marine Science and Engineering9(12), 1336.
Ayadi, F. Y., Rosentrater, K. A., & Muthukumarappan, K. (2012). Alternative protein sources for aquaculture feeds. Journal of Aquaculture Feed Science and Nutrition4(1), 1-26.
Azra, M. N., Okomoda, V. T., & Ikhwanuddin, M. (2022). Breeding Technology as a Tool for Sustainable Aquaculture Production and Ecosystem Services. Frontiers in Marine Science9, 679529. DOI: 10.3389/fmars.2022.679529
Baeza-Rojano, E., Hachero-Cruzado, I., & Guerra-García, J. M. (2014). Nutritional analysis of freshwater and marine amphipods from the Strait of Gibraltar and potential aquaculture applications. Journal of Sea Research85, 29-36.
Baeza‐Rojano, E., Domingues, P., Guerra‐García, J. M., Capella, S., Noreña‐Barroso, E., Caamal‐Monsreal, C., & Rosas, C. (2013a). Marine gammarids (Crustacea: Amphipoda): a new live prey to culture Octopus maya hatchlings. Aquaculture Research44(10), 1602-1612.
Baeza-Rojano E, Calero-Cano S, Hachero-Cruzado I, Guerra-García JM. (2013b). A preliminary study of the Caprella scaura amphipod culture for potential use in aquaculture. Journal of Sea Research 83:146–151

Baeza-Rojano E, García S, Garrido D, Guerra-García JM, Domingues P. (2010). Use of Amphipods as alternative prey to culture cuttlefish (Sepia officinalis) hatchlings. Aquaculture 300(1–4):243–246.
Bake, G. G., Endo, M., Satoh, S., Sadiku, S. O. E., & Takeuchi, T. (2013). Nitrogen and mineral budget of Nile tilapia fry fed recycled food wastes materials supplemented with lysine and methionine in a closed recirculating fish culture system.
Bake, G. G., Endo, M., Akimoto, A., & Takeuchi, T. (2009). Evaluation of recycled food waste as a partial replacement of fishmeal in diets for the initial feeding of Nile tilapia Oreochromis niloticusFisheries Science75(5), 1275-1283.
Barroso, F. G., de Haro, C., Sánchez-Muros, M. J., Venegas, E., Martínez-Sánchez, A., & Pérez-Bañón, C. (2014). The potential of various insect species for use as food for fish. Aquaculture422, 193-201.
Basto, A., Calduch-Giner, J., Oliveira, B., Petit, L., Sá, T., Maia, M. R., ... & Valente, L. M. (2021). The use of defatted Tenebrio molitor larvae meal as a main protein source is supported in European sea bass (Dicentrarchus labrax) by data on growth performance, lipid metabolism, and flesh quality. Frontiers in physiology, 473.
Belton, B., Little, D. C., Zhang, W., Edwards, P., Skladany, M., & Thilsted, S. H. (2020). Farming fish in the sea will not nourish the world. Nature communications11(1), 1-8.
Belton, B., Bush, S. R., & Little, D. C. (2018). Not just for the wealthy: Rethinking farmed fish consumption in the Global South. Global Food Security16, 85-92.
Bleakley, S., & Hayes, M. (2017). Algal proteins: extraction, application, and challenges concerning production. Foods6(5), 33.
Boyd, C. E., D'Abramo, L. R., Glencross, B. D., Huyben, D. C., Juarez, L. M., Lockwood, G. S., ... & Valenti, W. C. (2020). Achieving sustainable aquaculture: Historical and current perspectives and future needs and challenges. Journal of the World Aquaculture Society51(3), 578-633.
Brown, N., Eddy, S., & Plaud, S. (2011). Utilization of waste from a marine recirculating fish culture system as a feed source for the polychaete worm, Nereis virensAquaculture322, 177-183.
Bruno, S. F., Ekorong, F. J. A. A., Karkal, S. S., Cathrine, M. S. B., & Kudre, T. G. (2019). Green and innovative techniques for recovery of valuable compounds from seafood by-products and discards: A review. Trends in Food Science & Technology85, 10-22.
Buckle, K. (2015). Can food science reduce world hunger?. In Food security and food safety for the twenty-first century (pp. 3-12). Springer, Singapore.
Canada Justice Laws (2018) Feed Regulations, 1983 (SOR/83- 593). [Cited 15 Mar 2018.] Avilable from URL: http://la
Caruso, G. (2016). Fishery wastes and by-products: A resource to be valorised. Journal of FisheriesSciences. com10(1), 0-0.
Castrica, M., Tedesco, D. E., Panseri, S., Ferrazzi, G., Ventura, V., Frisio, D. G., & Balzaretti, C. M. (2018). Pet food as the most concrete strategy for using food waste as feedstuff within the European context: A feasibility study. Sustainability10(6), 2035.
Chen, F., Leng, Y., Lu, Q., & Zhou, W. (2021). The application of microalgae biomass and bio-products as aquafeed for aquaculture. Algal Research60, 102541.
Cheng, Z., Mo, W. Y., Man, Y. B., Lam, C. L., Choi, W. M., Nie, X. P., ... & Wong, M. H. (2015). Environmental mercury concentrations in cultured low-trophic-level fish using food waste-based diets. Environmental Science and Pollution Research22(1), 495-507.
Cheng, Z., Mo, W. Y., Man, Y. B., Nie, X. P., Li, K. B., & Wong, M. H. (2014). Replacing fish meal by food waste in feed pellets to culture lower trophic level fish containing acceptable levels of organochlorine pesticides: health risk assessments. Environment international73, 22-27.
Cheung, R. C. F., Ng, T. B., & Wong, J. H. (2015). Marine peptides: Bioactivities and applications. Marine drugs13(7), 4006-4043.
Chi, C. F., Wang, B., Wang, Y. M., Zhang, B., & Deng, S. G. (2015). Isolation and characterization of three antioxidant peptides from protein hydrolysate of bluefin leatherjacket (Navodon septentrionalis) heads. Journal of functional foods12, 1-10.
 Choi, W. M., Lam, C. L., Mo, W. Y., & Wong, M. H. (2016). The use of food wastes as feed ingredients for culturing grass carp (Ctenopharyngodon idellus) in Hong Kong. Environmental Science and Pollution Research23(8), 7178-7185.
Chopin, T., & Tacon, A. G. (2021). Importance of seaweeds and extractive species in global aquaculture production. Reviews in Fisheries Science & Aquaculture29(2), 139-148.
Cole, A. J., De Nys, R., & Paul, N. A. (2015). Biorecovery of nutrient waste as protein in freshwater macroalgae. Algal Research7, 58-65.
Costello, C., Cao, L., Gelcich, S., Cisneros-Mata, M. Á., Free, C. M., Froehlich, H. E., ... & Lubchenco, J. (2020). The future of food from the sea. Nature588(7836), 95-100.
Cottrell, R. S., Blanchard, J. L., Halpern, B. S., Metian, M., & Froehlich, H. E. (2020). Global adoption of novel aquaculture feeds could substantially reduce forage fish demand by 2030. Nature Food1(5), 301-308.
Coutteau, P., & Sorgeloos, P. (1992). The use of algal substitutes and the requirement for live algae in the hatchery and nursery rearing of bivalve molluscs: an international survey. Journal of Shellfish Research11, 467-467.
Daniel, N. (2018). A review on replacing fish meal in aqua feeds using plant protein sources. International Journal of Fisheries and Aquatic Studies6(2), 164-179.
Delamare-Deboutteville, J., Batstone, D. J., Kawasaki, M., Stegman, S., Salini, M., Tabrett, S., ... & Hülsen, T. (2019). Mixed culture purple phototrophic bacteria is an effective fishmeal replacement in aquaculture. Water research X4, 100031.
Dumas, A., Raggi, T., Barkhouse, J., Lewis, E., & Weltzien, E. (2018). The oil fraction and partially defatted meal of black soldier fly larvae (Hermetia illucens) affect differently growth performance, feed efficiency, nutrient deposition, blood glucose and lipid digestibility of rainbow trout (Oncorhynchus mykiss). Aquaculture492, 24-34.
EFSA (European Food Safety Authority Scientific Committee) (2015). Scientific opinion on a risk profile related to production and consumption of insects as food and feed. Efsa J. 13(4257)
Elhag, A. I., Rahmah, S., Rasid, R. A., Shahin, S., Noor, G. A. G. R., Muda, M. S., ... & Liew, H. J. (2022). Fatty acids in the inedible parts of jade perch Scortum barcooAquaculture International, 1-15.
Emeka, A. I., & Oscar, E. V. (2016). Comparative study of growth performance, food utilization and survival of the African catfish Clarias gariepinus (Burchell, 1822) fingerlings fed live maggot (Musca domestica) and coppens commercial feed. International Journal of Scientific Research in Science, Engineering and Technology2(2), 379-386.
EU (The European Union) (2013). Regulations Commission Regulation (EU) No 68/2013 of 16 January 2013 on the Catalogue of Feed Materials. [Cited 5 Apr 2017.] Available from URL: xUriServ/ PDF
EU (2009). Regulation (EC) No 1069/2009 of the European Parlia- ment and of the Council of 21 October 2009, Animal By-products Regulation (EC) No. 1069/2009.
EU (2003). The use of fish by-products in aquaculture. Health & Consumer Protection. Directorate General. Ed. Report of the Scientific Committee on Animal Health and Animal Welfare, 93.
FAO (2020). The State of World Fisheries and Aquaculture 2020. Sustainability in action. Rome.
FAO (2018). The State of World Fisheries and Aquaculture 2018— Meeting the Sustainable Development Goals (FAO).
FAO (2015). The State of Food Insecurity in the World 2015. Food and Agriculture Organization of the United Nations, Rome Italy. Retrieved 12 Jan 2016.
FAOSTAT (2014). The State of World Fisheries and Aquaculture. Opportunities and challenges. Rome: FAO
Fasaei, F., Bitter, J. H., Slegers, P. M., & Van Boxtel, A. J. B. (2018). Techno-economic evaluation of microalgae harvesting and dewatering systems. Algal Research31, 347-362.
Ferdouse, F., Holdt, S. L., Smith, R., Murúa, P., & Yang, Z. (2018). The global status of seaweed production, trade and utilization. Globefish Research Programme124, I.
Fernandez-Gonzalez, V., Toledo-Guedes, K., Valero-Rodriguez, J. M., Agraso, M. D. M., & Sanchez-Jerez, P. (2018). Harvesting amphipods applying the integrated multitrophic aquaculture (IMTA) concept in off-shore areas. Aquaculture489, 62-69.
Ferraro, V., Cruz, I. B., Jorge, R. F., Malcata, F. X., Pintado, M. E., & Castro, P. M. (2010). Valorisation of natural extracts from marine source focused on marine by-products: A review. Food Research International43(9), 2221-2233.
Filipski, M., & Belton, B. (2018). Give a man a fishpond: modeling the impacts of aquaculture in the rural economy. World Development110, 205-223.
Fleurence, J., Morançais, M., & Dumay, J. (2018). Proteins in food processing. Seaweed proteins, 245-262.
Fowles, T. M., & Nansen, C. (2020). Insect-based bioconversion: value from food waste. In Food waste management (pp. 321-346). Palgrave Macmillan, Cham.
Froehlich, H. E., Jacobsen, N. S., Essington, T. E., Clavelle, T., & Halpern, B. S. (2018). Avoiding the ecological limits of forage fish for fed aquaculture. Nature Sustainability1(6), 298-303.
Gamarro, E. G., Orawattanamateekul, W., Sentina, J., & Gopal, T. S. (2013). By-products of tuna processing. GLOBEFISH Research Programme112, I.
García-Romero, J., Ginés, R., Izquierdo, M., & Robaina, L. (2014). Marine and freshwater crab meals in diets for red porgy (Pagrus pagrus): Effect on fillet fatty acid profile and flesh quality parameters. Aquaculture420, 231-239.
Gasco, L., Acuti, G., Bani, P., Dalle Zotte, A., Danieli, P. P., De Angelis, A., ... & Roncarati, A. (2020). Insect and fish by-products as sustainable alternatives to conventional animal proteins in animal nutrition. Italian Journal of Animal Science19(1), 360-372.
Ge, S., & Champagne, P. (2017). Cultivation of the marine macroalgae Chaetomorpha linum in municipal wastewater for nutrient recovery and biomass production. Environmental science & technology51(6), 3558-3566.
Gehring, C. K., Gigliotti, J. C., Moritz, J. S., Tou, J. C., & Jaczynski, J. (2011). Functional and nutritional characteristics of proteins and lipids recovered by isoelectric processing of fish by-products and low-value fish: A review. Food chemistry124(2), 422-431.
Georganas, A., Giamouri, E., Pappas, A. C., Papadomichelakis, G., Galliou, F., Manios, T., ... & Zervas, G. (2020). Bioactive compounds in food waste: A review on the transformation of food waste to animal feed. Foods9(3), 291.
Glencross, B. D., Huyben, D., & Schrama, J. W. (2020). The application of single-cell ingredients in aquaculture feeds—a review. Fishes5(3), 22.
Goodman, D., & Robison, R. (2013). The new rich in Asia: Mobile phones, McDonald's and middle class revolution. Routledge.
Gordalina, M., Pinheiro, H. M., Mateus, M., da Fonseca, M. M. R., & Cesário, M. T. (2021). Macroalgae as protein sources—a review on protein bioactivity, extraction, purification and characterization. Applied Sciences11(17), 7969.
Gratacap, R. L., Wargelius, A., Edvardsen, R. B., & Houston, R. D. (2019). Potential of genome editing to improve aquaculture breeding and production. Trends in Genetics35(9), 672-684.
Ghamkhar, R., & Hicks, A. (2020). Comparative environmental impact assessment of aquafeed production: Sustainability implications of forage fish meal and oil free diets. Resources, Conservation and Recycling161, 104849.
Gisbert, E., Fournier, V., Solovyev, M., Skalli, A., & Andree, K. B. (2018). Diets containing shrimp protein hydrolysates provided protection to European sea bass (Dicentrarchus labrax) affected by a Vibrio pelagius natural infection outbreak. Aquaculture495, 136-143.
Guerra-García, J. M., Hachero-Cruzado, I., González-Romero, P., Jiménez-Prada, P., Cassell, C., & Ros, M. (2016). Towards integrated multi-trophic aquaculture: lessons from caprellids (Crustacea: Amphipoda). PLoS One11(4), e0154776.
Guerreiro, I., Castro, C., Antunes, B., Coutinho, F., Rangel, F., Couto, A., ... & Enes, P. (2020). Catching black soldier fly for meagre: Growth, whole-body fatty acid profile and metabolic responses. Aquaculture516, 734613.
Guillen, J., Holmes, S. J., Carvalho, N., Casey, J., Dörner, H., Gibin, M., ... & Zanzi, A. (2018). A review of the European Union landing obligation focusing on its implications for fisheries and the environment. Sustainability10(4), 900.
Hamidoghli, A., Yun, H., Won, S., Kim, S., Farris, N. W., & Bai, S. C. (2019). Evaluation of a single-cell protein as a dietary fish meal substitute for whiteleg shrimp Litopenaeus vannameiFisheries science85(1), 147-155.
Hanachi, P., Karbalaei, S., Walker, T. R., Cole, M., & Hosseini, S. V. (2019). Abundance and properties of microplastics found in commercial fish meal and cultured common carp (Cyprinus carpio). Environmental Science and Pollution Research26(23), 23777-23787.
Hansen, J. Ø., Lagos, L., Lei, P., Reveco-Urzua, F. E., Morales-Lange, B., Hansen, L. D., ... & Øverland, M. (2021). Down-stream processing of baker's yeast (Saccharomyces cerevisiae)–Effect on nutrient digestibility and immune response in Atlantic salmon (Salmo salar). Aquaculture530, 735707.
Hardy, R. W., Patro, B., Pujol‐Baxley, C., Marx, C. J., & Feinberg, L. (2018). Partial replacement of soybean meal with Methylobacterium extorquens single‐cell protein in feeds for rainbow trout (Oncorhynchus mykiss Walbaum). Aquaculture Research49(6), 2218-2224.
Harlıoğlu MM, Farhadi A. 2018. Importance of Gammarus in aquaculture. Aquaculture International 26:1327–1338.
Hassaan, M. S., Mahmoud, S. A., Jarmolowicz, S., El‐Haroun, E. R., Mohammady, E. Y., & Davies, S. J. (2018). Effects of dietary baker’s yeast extract on the growth, blood indices and histology of Nile tilapia (Oreochromis niloticus L.) fingerlings. Aquaculture Nutrition24(6), 1709-1717.
Hawkey, K. J., Lopez-Viso, C., Brameld, J. M., Parr, T., & Salter, A. M. (2021). Insects: a potential source of protein and other nutrients for feed and food. Annual Review of Animal Biosciences, 9, 333-354.
Henry, M., Gasco, L., Piccolo, G., & Fountoulaki, E. (2015). Review on the use of insects in the diet of farmed fish: past and future. Animal Feed Science and Technology203, 1-22.
Herawati, V. E., Darmanto, Y. S., Rismaningsih, N., Hutabarat, J., Prayitno, S. B., & Radjasa, O. K. (2020). Effect of feeding with Phronima sp. on growth, survival rate and nutrient value content of Pacific white shrimp (Litopenaeus vannamei) Post-larvae. Aquaculture, 529, 735674.
Hessler Frelinckx, J. C. (2019). Behavioural study of the house cricket (Acheta domesticus). First cycle, G2E. Uppsala: Swedish University of Agricultural Sciences, Dept. of Ecology
Hjelleset, T. (2022). MINERAL CARRYOVER FROM SHELLED MUSSEL MEAL IN THE SPOTTED WOLFFISH (ANARHICHAS MINOR). Potential of dietary mineral supplementation on growth, stress and health. Master’s Thesis, University of Gothenburg / Department of Biological and Environmental Sciences.
HKEPD, 2012. Monitoring of Solid Waste in Hong Kong e Waste Statistics for 2011. Environmental Protection Department, Hong Kong SAR Government.
Holdt, S. L., & Kraan, S. (2011). Bioactive compounds in seaweed: functional food applications and legislation. Journal of applied phycology23(3), 543-597.
Hoover, C. M., Sokolow, S. H., Kemp, J., Sanchirico, J. N., Lund, A. J., Jones, I. J., ... & De Leo, G. A. (2019). Modelled effects of prawn aquaculture on poverty alleviation and schistosomiasis control. Nature Sustainability2(7), 611-620.
Hsieh, M.J. (2010). Effects of Fish Meal Replacement by Kitchen Waste on the Growth and Body Composition of Tilapia (Oreochromis nilotica × Oreochromis aurea), Giant Grou- per (Epinephelus lanceolatus) and Orange-Spotted Grouper (Epinephelus coioides). Master's Thesis. National Taiwan Ocean University.
Hua, K. (2021). A meta-analysis of the effects of replacing fish meals with insect meals on growth performance of fish. Aquaculture530, 735732.
Hua, K., Cobcroft, J. M., Cole, A., Condon, K., Jerry, D. R., Mangott, A., ... & Strugnell, J. M. (2019). The future of aquatic protein: implications for protein sources in aquaculture diets. One Earth1(3), 316-329.
Hunter, M. C., Smith, R. G., Schipanski, M. E., Atwood, L. W., & Mortensen, D. A. (2017). Agriculture in 2050: recalibrating targets for sustainable intensification. Bioscience67(4), 386-391.
IPIFF (2019). The European Insect Sector today: challenges, opportunities and regulatory landscape. IPIFF vision paper on the future of the insect sector towards 2030. [Accessed 2019 Aug 1].
Iriondo-DeHond, M., Miguel, E., & Castillo, M. (2019). Byproducts as a source of novel ingredients in dairy foods.
Jeong, S. M., Khosravi, S., Mauliasari, I. R., & Lee, S. M. (2020). Dietary inclusion of mealworm (Tenebrio molitor) meal as an alternative protein source in practical diets for rainbow trout (Oncorhynchus mykiss) fry. Fisheries and Aquatic Sciences23(1), 1-8.
Ji, H., Zhang, J. L., Huang, J. Q., Cheng, X. F., & Liu, C. (2015). Effect of replacement of dietary fish meal with silkworm pupae meal on growth performance, body composition, intestinal protease activity and health status in juvenile Jian carp (Cyprinus carpio var. Jian). Aquaculture Research46(5), 1209-1221.
Jiménez-Prada, P., Hachero-Cruzado, I., & Guerra-García, J. M. (2021). Aquaculture waste as food for amphipods: the case of Gammarus insensibilis in marsh ponds from southern Spain. Aquaculture International29(1), 139-153.
Jiménez-Prada, P., Hachero-Cruzado, I., Giráldez, I., Fernández-Diaz, C., Vilas, C., Cañavate, J. P., & Guerra-García, J. M. (2018). Crustacean amphipods from marsh ponds: a nutritious feed resource with potential for application in Integrated Multi-Trophic Aquaculture. PeerJ6, e4194..
Jiménez-Prada, P., Hachero-Cruzado, I., & Guerra-García, J. M. (2015). The importance of amphipods in diets of marine species with aquaculture interest of Andalusian coast.
Józefiak, A., Nogales-Mérida, S., Mikołajczak, Z., Rawski, M., Kierończyk, B., & Mazurkiewicz, J. (2019). The Utilization of Full-Fat Insect Meal in Rainbow Trout () Nutrition: The Effects on Growth Performance, Intestinal Microbiota and Gastrointestinal Tract Histomorphology. Annals of Animal Science19(3), 747-765.
Jusadi, D., Ekasari, J., Suprayudi, M. A., Setiawati, M., & Fauzi, I. A. (2021). Potential of underutilized marine organisms for aquaculture feeds. Frontiers in Marine Science7, 609471.
Karapanagiotidis, I. T. (2020). The Re-Authorization of Non-Ruminant Processed Animal Proteins in European Aqua feeds. Fisheries and Aquaculture Journal11(5), 1a-1a.
Karthick Raja, P., Aanand, S., Stephen Sampathkumar, J., & Padmavathy, P. (2019). Silkworm pupae meal as alternative source of protein in fish feed. Journal of Entomology and Zoology Studies7(4), 78-85.
Katya, K., Borsra, M. Z. S., Ganesan, D., Kuppusamy, G., Herriman, M., Salter, A., & Ali, S. A. (2017). Efficacy of insect larval meal to replace fish meal in juvenile barramundi, Lates calcarifer reared in freshwater. International Aquatic Research9(4), 303-312.
Khan, M. A., Das, S. K., & Bhakta, D. (2018). Food and feeding habits, gastro-somatic index and gonado-somatic index of Scylla serrata from Hooghly-Matlah estuary of West Bengal, India. Journal of the Marine Biological Association of India60(1), 14. doi: 10.6024/jmbai.2018.60.1.1994-02
Kim, H. S., Jung, W. G., Myung, S. H., Cho, S. H., & Kim, D. S. (2014). Substitution effects of fishmeal with tuna byproduct meal in the diet on growth, body composition, plasma chemistry and amino acid profiles of juvenile olive flounder (Paralichthys olivaceus). Aquaculture431, 92-98.
Khanjani, M. H., & Sharifinia, M. (2020). Biofloc technology as a promising tool to improve aquaculture production. Reviews in aquaculture12(3), 1836-1850.
Kolawole, A. A., & Ugwumba, A. A. A. (2018). Economic Evaluation of Different Culture Enclosures for Musca domestica Larval Production and Their Utilization for Clarias gariepinus (Burchell, 1822) Fingerlings Diets. Notulae Scientia Biologicae10(4), 466-474.
Kotzamanis, Y. P., Gisbert, E., Gatesoupe, F. J., Infante, J. Z., & Cahu, C. (2007). Effects of different dietary levels of fish protein hydrolysates on growth, digestive enzymes, gut microbiota, and resistance to Vibrio anguillarum in European sea bass (Dicentrarchus labrax) larvae. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology147(1), 205-214.
Kurečka, M., Kulma, M., Petříčková, D., Plachý, V., & Kouřimská, L. (2021). Larvae and pupae of Alphitobius diaperinus as promising protein alternatives. European Food Research and Technology247(10), 2527-2532.
Larsen, J., & Roney, J. M. (2013). Farmed fish production overtakes beef. Washington, DC: Earth Policy Institute.
Leelatanawit, R., Uawisetwathana, U., Khudet, J., Klanchui, A., Phomklad, S., Wongtripop, S., ... & Karoonuthaisiri, N. (2014). Effects of polychaetes (Perinereis nuntia) on sperm performance of the domesticated black tiger shrimp (Penaeus monodon). Aquaculture433, 266-275.
Li, Y., Kortner, T. M., Chikwati, E. M., Belghit, I., Lock, E. J., & Krogdahl, Å. (2020). Total replacement of fish meal with black soldier fly (Hermetia illucens) larvae meal does not compromise the gut health of Atlantic salmon (Salmo salar). Aquaculture520, 734967.
Liland, N. S., Biancarosa, I., Araujo, P., Biemans, D., Bruckner, C. G., Waagbø, R., ... & Lock, E. J. (2017). Modulation of nutrient composition of black soldier fly (Hermetia illucens) larvae by feeding seaweed-enriched media. PloS one12(8), e0183188.
Lopes, C., Antelo, L. T., Franco-Uría, A., Alonso, A. A., & Pérez-Martín, R. (2015). Valorisation of fish by-products against waste management treatments–Comparison of environmental impacts. Waste management46, 103-112.
Macombe, C., Le Feon, S., Aubin, J., & Maillard, F. (2019). Marketing and social effects of industrial scale insect value chains in Europe: case of mealworm for feed in France. Journal of Insects as Food and Feed5(3), 215-224.
Magnusson, M., Glasson, C. R., Vucko, M. J., Angell, A., Neoh, T. L., & de Nys, R. (2019). Enrichment processes for the production of high-protein feed from the green seaweed Ulva ohnoiAlgal Research41, 101555.
Malcorps, W., Kok, B., van ‘t Land, M., Fritz, M., van Doren, D., Servin, K., ... & Davies, S. J. (2019). The sustainability conundrum of fishmeal substitution by plant ingredients in shrimp feeds. Sustainability11(4), 1212.
Mancuso, T., Pippinato, L., & Gasco, L. (2019). The European insects sector and its role in the provision of green proteins in feed supply. Calitatea20(S2), 374-381.
Manikandan, D. B., Veeran, S., Seenivasan, S., Sridhar, A., Arumugam, M., Yangen, Z., & Ramasamy, T. (2022). Exploration of marine red seaweed as a dietary fish meal replacement and its potentiality on growth, hematological, biochemical, and enzyme activity in freshwater fish Labeo rohitaTropical Animal Health and Production54(6), 1-15.
Masson, M. V., de Souza Tavares, W., Alves, J. M., Ferreira-Filho, P. J., Barbosa, L. R., Wilcken, C. F., & Zanuncio, J. C. (2020). Bioecological aspects of the common black field cricket, Gryllus assimilis (Orthoptera: Gryllidae) in the laboratory and in Eucalyptus (Myrtaceae) plantations. Journal of orthoptera research29(1), 83-89. .
Matassa, S., Papirio, S., Pikaar, I., Hülsen, T., Leijenhorst, E., Esposito, G., ... & Verstraete, W. (2020). Upcycling of biowaste carbon and nutrients in line with consumer confidence: the “full gas” route to single cell protein. Green Chemistry22(15), 4912-4929.
Michalk, D. L., Kemp, D. R., Badgery, W. B., Wu, J., Zhang, Y., & Thomassin, P. J. (2019). Sustainability and future food security—a global perspective for livestock production. Land Degradation & Development30(5), 561-573.
Miyashita, K., Mikami, N., & Hosokawa, M. (2013). Chemical and nutritional characteristics of brown seaweed lipids: A review. Journal of Functional Foods5(4), 1507-1517.
Mo, W. Y., Cheng, Z., Choi, W. M., Man, Y. B., Liu, Y., & Wong, M. H. (2014). Application of food waste based diets in polyculture of low trophic level fish: effects on fish growth, water quality and plankton density. Marine pollution bulletin85(2), 803-809.
Mohan, K., Rajan, D. K., Muralisankar, T., Ganesan, A. R., Sathishkumar, P., & Revathi, N. (2022). Use of black soldier fly (Hermetia illucens L.) larvae meal in aquafeeds for a sustainable aquaculture industry: A review of past and future needs. Aquaculture, 738095.
Muller-Feuga, A. (2000). The role of microalgae in aquaculture: situation and trends. Journal of applied phycology12(3), 527-534.
Nagappan, S., Das, P., AbdulQuadir, M., Thaher, M., Khan, S., Mahata, C., ... & Kumar, G. (2021). Potential of microalgae as a sustainable feed ingredient for aquaculture. Journal of Biotechnology341, 1-20.
Najafian, L., & Babji, A. S. (2012). A review of fish-derived antioxidant and antimicrobial peptides: Their production, assessment, and applications. Peptides33(1), 178-185.
Nasser, N., Abiad, M. G., Babikian, J., Monzer, S., & Saoud, I. P. (2018). Using restaurant food waste as feed for Nile tilapia production. Aquaculture Research49(9), 3142-3150.
Neveux, N., Bolton, J. J., Bruhn, A., Roberts, D. A., & Ras, M. (2018). The bioremediation potential of seaweeds: recycling nitrogen, phosphorus, and other waste products. Blue biotechnology: production and use of marine molecules1, 217-239.
Nguyen, N. H., Trinh, L. T., Chau, D. T., Baruah, K., Lundh, T., & Kiessling, A. (2019). Spent brewer's yeast as a replacement for fishmeal in diets for giant freshwater prawn (Macrobrachium rosenbergii), reared in either clear water or a biofloc environment. Aquaculture Nutrition25(4), 970-979.
Nikoletta, H. (2019). Insects as animal feed. Magyar Allatorvosok Lapja, 141(2019), 117–128.
Niu, J., Xie, S. W., Fang, H. H., Xie, J. J., Guo, T. Y., Zhang, Y. M., ... & Liu, Y. J. (2018). Dietary values of macroalgae Porphyra haitanensis in Litopenaeus vannamei under normal rearing and WSSV challenge conditions: Effect on growth, immune response and intestinal microbiota. Fish & shellfish immunology81, 135-149.
Nogales‐Mérida, S., Gobbi, P., Józefiak, D., Mazurkiewicz, J., Dudek, K., Rawski, M., ... & Józefiak, A. (2019). Insect meals in fish nutrition. Reviews in Aquaculture11(4), 1080-1103.
Norambuena, F., Estevez, A., Bell, G., Carazo, I., & Duncan, N. (2012). Proximate and fatty acid compositions in muscle, liver and gonads of wild versus cultured broodstock of Senegalese sole (Solea senegalensis). Aquaculture356, 176-185.
Nurdiani, R., Vasiljevic, T., Yeager, T., Singh, T. K., & Donkor, O. N. (2017). Bioactive peptides with radical scavenging and cancer cell cytotoxic activities derived from Flathead (Platycephalus fuscus) by-products. European Food Research and Technology243(4), 627-637.
Nuswantoro, S., & Rahardjo, S. S. P. (2018). Effect of using silkworm (Tubifex sp.) living on the survival rate and growth of the catfish larvae (Clarias sp.). IOSR Journal of Agriculture and Veterinary Science (IOSR-JAVS)1(2), 42-46. DOI: 10.9790/2380-1102024246
Okomoda, V. T., Musa, S. O., Tiamiyu, L. O., Solomon, S. G., Oladimeji, A. S., Hassan, A., ... & Abol-Munafi, A. B. (2020). Fermentation of hydrothermal processed Jatropha curcas Kernel: Effects on the performance of Clarias gariepinus (Burchell, 1822) fingerlings. Aquaculture Reports18, 100428.
Oliva-Teles, A., Guedes, M. J., Vachot, C., & Kaushik, S. J. (2006). The effect of nucleic acids on growth, ureagenesis and nitrogen excretion of gilthead sea bream Sparus aurata juveniles. Aquaculture253(1-4), 608-617.
Oliva-Teles, A., & Gonçalves, P. (2001). Partial replacement of fishmeal by brewers yeast (Saccaromyces cerevisae) in diets for sea bass (Dicentrarchus labrax) juveniles. Aquaculture202(3-4), 269-278.
Olmos-Pérez, L., Roura, Á., Pierce, G. J., Boyer, S., & González, Á. F. (2017). Diet composition and variability of wild Octopus vulgaris and Alloteuthis media (Cephalopoda) paralarvae: A metagenomic approach. Frontiers in Physiology8, 321.
Olsen, R. L., Toppe, J., & Karunasagar, I. (2014). Challenges and realistic opportunities in the use of by-products from processing of fish and shellfish. Trends in Food Science & Technology36(2), 144-151.
Olukomaiya, O. O., Adiamo, O. Q., Fernando, W. C., Mereddy, R., Li, X., & Sultanbawa, Y. (2020). Effect of solid-state fermentation on proximate composition, anti-nutritional factor, microbiological and functional properties of lupin flour. Food Chemistry315, 126238.
Øverland, M., Tauson, A. H., Shearer, K., & Skrede, A. (2010). Evaluation of methane-utilising bacteria products as feed ingredients for monogastric animals. Archives of animal nutrition64(3), 171-189.
Øverland, M., Mydland, L. T., & Skrede, A. (2019). Marine macroalgae as sources of protein and bioactive compounds in feed for monogastric animals. Journal of the Science of Food and Agriculture99(1), 13-24.
Palmer, P. J., Wang, S., Houlihan, A., & Brock, I. (2014). Nutritional status of a nereidid polychaete cultured in sand filters of mariculture wastewater. Aquaculture nutrition20(6), 675-691.
Pangestuti, R., & Kim, S. K. (2017). Bioactive peptide of marine origin for the prevention and treatment of non-communicable diseases. Marine Drugs15(3), 67.
Pavithra, K. G., Kumar, P. S., Jaikumar, V., Vardhan, K. H., & SundarRajan, P. (2020). Microalgae for biofuel production and removal of heavy metals: a review. Environmental Chemistry Letters18(6), 1905-1923.
Peñalosa Martinell, D., Vergara‐Solana, F. J., Almendarez‐Hernández, L. C., & Araneda‐Padilla, M. E. (2020). Econometric models applied to aquaculture as tools for sustainable production. Reviews in Aquaculture12(3), 1344-1359.
Pinotti, L., et al. "Insects and former foodstuffs for upgrading food waste biomasses/streams to feed ingredients for farm animals." Animal 13.7 (2019): 1365-1375.
Pinotti, L., Ottoboni, M., Caprarulo, V., Giromini, C., Gottardo, D., Cheli, F., ... & Baldi, A. (2016). Microscopy in combination with image analysis for characterization of fishmeal material in aquafeed. Animal Feed Science and Technology215, 156-164.
Pleissner, D., Lam, W. C., Sun, Z., & Lin, C. S. K. (2013). Food waste as nutrient source in heterotrophic microalgae cultivation. Bioresource technology137, 139-146.
Pombo, A., Baptista, T., Granada, L., Ferreira, S. M., Gonçalves, S. C., Anjos, C., ... & Costa, J. L. (2020). Insight into aquaculture's potential of marine annelid worms and ecological concerns: a review. Reviews in Aquaculture12(1), 107-121.
Poore, J., & Nemecek, T. (2018). Reducing food’s environmental impacts through producers and consumers. Science360(6392), 987-992. DOI: 10.1126/science.aaq0216
Qiu, X., Neori, A., Kim, J. K., Yarish, C., Shpigel, M., Guttman, L., ... & Davis, D. A. (2018). Evaluation of green seaweed Ulva sp. as a replacement of fish meal in plant-based practical diets for Pacific white shrimp, Litopenaeus vannameiJournal of Applied Phycology30(2), 1305-1316.
Rana, K. J., Siriwardena, S., & Hasan, M. R. (2009). Impact of rising feed ingredient prices on aquafeeds and aquaculture production (No. 541). Food and Agriculture Organization of the United Nations (FAO).
Rasidi, R., Jusadi, D., Setiawati, M., Yuhana, M., Zairin Jr, M., & Sugama, K. (2021). Dietary Supplementation of humic acid in the Feed of juvenile asian seabass, Lates calcarifer to counteract possible negative effects of Cadmium Accumulation on Growth and Fish Well‐being when Green Mussel (Perna viridis) is used as a Feed ingredient. Aquaculture Research52(6), 2550-2568.
Ragaza, J. A., Hossain, M. S., Koshio, S., Ishikawa, M., Yokoyama, S., Kotzamanis, Y., ... & Kumar, V. (2021). Brown seaweed (Sargassum fulvellum) inclusion in diets with fishmeal partially replaced with soy protein concentrate for Japanese flounder (Paralichthys olivaceus) juveniles. Aquaculture Nutrition27(4), 1052-1064.
Riani, E., Cordova, M. R., & Arifin, Z. (2018). Heavy metal pollution and its relation to the malformation of green mussels cultured in Muara Kamal waters, Jakarta Bay, Indonesia. Marine pollution bulletin133, 664-670.
Richard, N., Costas, B., Machado, M., Fernández-Boo, S., Girons, A., Dias, J., ... & Skiba-Cassy, S. (2021). Inclusion of a protein-rich yeast fraction in rainbow trout plant-based diet: Consequences on growth performances, flesh fatty acid profile and health-related parameters. Aquaculture544, 737132.
Rizwan, M., Mujtaba, G., Memon, S. A., Lee, K., & Rashid, N. (2018). Exploring the potential of microalgae for new biotechnology applications and beyond: a review. Renewable and Sustainable Energy Reviews92, 394-404.
Rumbos, C. I., Karapanagiotidis, I. T., Mente, E., & Athanassiou, C. G. (2019). The lesser mealworm Alphitobius diaperinus: a noxious pest or a promising nutrient source?. Reviews in Aquaculture11(4), 1418-1437.
Ryckebosch, E., Bruneel, C., Muylaert, K., & Foubert, I. (2012). Microalgae as an alternative source of omega‐3 long chain polyunsaturated fatty acids. Lipid Technology24(6), 128-130.
Sánchez-Muros, M. J., Barroso, F. G., & Manzano-Agugliaro, F. (2014). Insect meal as renewable source of food for animal feeding: a review. Journal of Cleaner Production65, 16-27.
Sarker, P. K., Kapuscinski, A. R., McKuin, B., Fitzgerald, D. S., Nash, H. M., & Greenwood, C. (2020a). Microalgae-blend tilapia feed eliminates fishmeal and fish oil, improves growth, and is cost viable. Scientific reports10(1), 1-14.
Sarker, P. K., Kapuscinski, A. R., Vandenberg, G. W., Proulx, E., & Sitek, A. J. (2020b). Towards sustainable and ocean-friendly aquafeeds: Evaluating a fish-free feed for rainbow trout (Oncorhynchus mykiss) using three marine microalgae species. Elementa: Science of the Anthropocene8.
Schlüter, O., Rumpold, B., Holzhauser, T., Roth, A., Vogel, R.F., Quasigroch, W., Vogel, S., Heinz, V., Jäger, H., Bandick, N., Kulling, S., Knorr, D., Steinberg, P., Engel, K.H., 2016. Safety aspects of the production of foods and food ingredients from insects. Molecular Nutrition Food Research 61, 1–14.
Sealey, W. M., Gaylord, T. G., Barrows, F. T., Tomberlin, J. K., McGuire, M. A., Ross, C., & St‐Hilaire, S. (2011). Sensory analysis of rainbow trout, Oncorhynchus mykiss, fed enriched black soldier fly prepupae, Hermetia illucens. Journal of the World Aquaculture Society42(1), 34-45.
Secci, G., Borgogno, M., Lupi, P., Rossi, S., Paci, G., Mancini, S., ... & Parisi, G. (2016). Effect of mechanical separation process on lipid oxidation in European aquacultured sea bass, gilthead sea bream, and rainbow trout products. Food Control67, 75-81.
Selvam, S. B. (2021). Proximate Analysis of Bait Polychaetes from Port Dickson, Malaysia as Prospectus Replacement for Aquaculture Feed. International Journal of Forest, Animal and Fisheries Research (IJFAF), 5(1). :
Silva, A. J., Cavalcanti, V. L. R., Porto, A. L. F., Gama, W. A., Brandão-Costa, R. M. P., & Bezerra, R. P. (2020). The green microalgae Tetradesmus obliquus (Scenedesmus acutus) as lectin source in the recognition of ABO blood type: purification and characterization. Journal of Applied Phycology32(1), 103-110.
Silva, S. S. D., & Davy, F. B. (2010). Aquaculture successes in Asia: contributing to sustained development and poverty alleviation. In Success stories in Asian aquaculture (pp. 1-14). Springer, Dordrecht. DOI: 10.1007/978-90-481-3087-0_1
Shabani, A., Boldaji, F., Dastar, B., Ghoorchi, T., & Zerehdaran, S. (2018). Preparation of fish waste silage and its effect on the growth performance and meat quality of broiler chickens. Journal of the Science of Food and Agriculture98(11), 4097-4103.
Shah, M. R., Lutzu, G. A., Alam, A., Sarker, P., Chowdhury, K., Parsaeimehr, A., ... & Daroch, M. (2018). Microalgae in aquafeeds for a sustainable aquaculture industry. Journal of applied phycology30(1), 197-213.
Shahin, S., Okomoda, V. T., Ishak, S. D., Waiho, K., Fazhan, H., Azra, M. N., ... & Ikhwanuddin, M. (2023a). Lagoon amphipods as a new feed resource for aquaculture: A life history assessment of Grandidierella halophilaJournal of Sea Research, 102360.
Shahin, S., Okomoda, V. T., Ishak, S. D., Waiho, K., Fazhan, H., Azra, M. N., ... & Ikhwanuddin, M. (2023b). First report on the life history of the marine amphipod Ceradocus mizani and its implication for aquaculture. Invertebrate Biology, e12398.
Sogari, G., Amato, M., Biasato, I., Chiesa, S., & Gasco, L. (2019). The potential role of insects as feed: A multi-perspective review. Animals9(4), 119.
Soler-Vila, A., Coughlan, S., Guiry, M. D., & Kraan, S. (2009). The red alga Porphyra dioica as a fish-feed ingredient for rainbow trout (Oncorhynchus mykiss): effects on growth, feed efficiency, and carcass composition. Journal of Applied Phycology21(5), 617-624.
Spranghers, T., Ottoboni, M., Klootwijk, C., Ovyn, A., Deboosere, S., De Meulenaer, B., ... & De Smet, S. (2017). Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. Journal of the Science of Food and Agriculture97(8), 2594-2600.
Stamer, A. N. D. R. E. A. S., Wessels, S., Neidigk, R., & Hoerstgen-Schwark, G. (2014). Black soldier fly (Hermetia illucens) larvae-meal as an example for a new feed ingredients’ class in aquaculture diets.
Stentiford, G. D., Bateman, I. J., Hinchliffe, S. J., Bass, D., Hartnell, R., Santos, E. M., ... & Tyler, C. R. (2020). Sustainable aquaculture through the One Health lens. Nature Food1(8), 468-474.
Storebakken, T., Baeverfjord, G., Skrede, A., Olli, J. J., & Berge, G. M. (2004). Bacterial protein grown on natural gas in diets for Atlantic salmon, Salmo salar, in freshwater. Aquaculture241(1-4), 413-425.
Su, J., Gong, Y., Cao, S., Lu, F., Han, D., Liu, H., ... & Xie, S. (2017). Effects of dietary Tenebrio molitor meal on the growth performance, immune response and disease resistance of yellow catfish (Pelteobagrus fulvidraco). Fish & Shellfish Immunology69, 59-66.
Suplicy, F. M. (2020). A review of the multiple benefits of mussel farming. Reviews in Aquaculture12(1), 204-223.
Tacon, A. G., & Metian, M. (2015). Feed matters: satisfying the feed demand of aquaculture. Reviews in Fisheries Science & Aquaculture23(1), 1-10.
Tacon, A. G. (2020). Trends in global aquaculture and aquafeed production: 2000–2017. Reviews in Fisheries Science & Aquaculture28(1), 43-56.
Tacon, A. G., Metian, M., & McNevin, A. A. (2022). Future feeds: suggested guidelines for sustainable development. Reviews in Fisheries Science & Aquaculture30(2), 271-279.
Tilami, S. K., Turek, J., Červený, D., Lepič, P., Kozák, P., Burkina, V., ... & Mráz, J. (2020). Insect meal as a partial replacement for fish meal in a formulated diet for perch perca fluviatilis. Turkish Journal of Fisheries and Aquatic Sciences20(12), 867-878. DOI : 10.4194/1303-2712-v20_12_03
Tlusty, M., Rhyne, A., Szczebak, J. T., Bourque, B., Bowen, J. L., Burr, G., ... & Feinberg, L. (2017). A transdisciplinary approach to the initial validation of a single cell protein as an alternative protein source for use in aquafeeds. PeerJ5, e3170.
Tschirley, D., Reardon, T., Dolislager, M., & Snyder, J. (2015). The rise of a middle class in East and Southern Africa: Implications for food system transformation. Journal of International Development27(5), 628-646.
United Nations, Department of Economic and Social Affairs, Population Division (2022). World Population Prospects 2022: Summary of Results. UN DESA/POP/2022/TR/NO. 3.
USEPA, (2012). Food Waste. food/. Retrieved 10 Feb 2016. 
Van De Lagemaat, J., Pyle, D.L., 2001. Solid state fermentation and bioremediation: development of a continuous process for the production of fungal tannase. Chemical Engineering Journal, 84, 115–123.
Vandeweyer, D., Wynants, E., Crauwels, S., Verreth, C., Viaene, N., Claes, J., ... & Van Campenhout, L. (2018). Microbial dynamics during industrial rearing, processing, and storage of tropical house crickets (Gryllodes sigillatus) for human consumption. Applied and Environmental Microbiology84(12), e00255-18.
Van Huis, A., & Oonincx, D. G. (2017). The environmental sustainability of insects as food and feed. A review. Agronomy for Sustainable Development37(5), 1-14.
Van Huis, A. V., Itterbeeck, J. V., Klunder, H., Mertens, E., Halloran, A., Muir, G., & Vantomme, P. (2013). Edible insects: future prospects for food and feed security. FAO Forestry paper, (171).
Vargas-Abúndez, J. A., López-Vázquez, H. I., Mascaró, M., Martínez-Moreno, G. L., & Simões, N. (2021). Marine amphipods as a new live prey for ornamental aquaculture: exploring the potential of Parhyale hawaiensis and Elasmopus pectenicrusPeerJ9, e10840.
Vidakovic, A., Huyben, D., Sundh, H., Nyman, A., Vielma, J., Passoth, V., ... & Lundh, T. (2020). Growth performance, nutrient digestibility and intestinal morphology of rainbow trout (Oncorhynchus mykiss) fed graded levels of the yeasts Saccharomyces cerevisiae and Wickerhamomyces anomalusAquaculture Nutrition26(2), 275-286.
Viegas, C., Gouveia, L., & Gonçalves, M. (2021). Aquaculture wastewater treatment through microalgal. Biomass potential applications on animal feed, agriculture, and energy. Journal of Environmental Management286, 112187.
Villamil, O., Váquiro, H., & Solanilla, J. F. (2017). Fish viscera protein hydrolysates: Production, potential applications and functional and bioactive properties. Food Chemistry224, 160-171.
Vucko, M. J., Cole, A. J., Moorhead, J. A., Pit, J., & de Nys, R. (2017). The freshwater macroalga Oedogonium intermedium can meet the nutritional requirements of the herbivorous fish Ancistrus cirrhosusAlgal research27, 21-31.
Wan, A. H., Davies, S. J., Soler‐Vila, A., Fitzgerald, R., & Johnson, M. P. (2019). Macroalgae as a sustainable aquafeed ingredient. Reviews in Aquaculture11(3), 458-492.
Wang, Y., Tao, S., Liao, Y., Lian, X., Luo, C., Zhang, Y., ... & Yang, Y. (2020). Partial fishmeal replacement by mussel meal or meat and bone meal in low‐fishmeal diets for juvenile Ussuri catfish (Pseudobagrus ussuriensis): Growth, digestibility, antioxidant capacity and IGF‐I gene expression. Aquaculture nutrition26(3), 727-736.
Wang, H., Seekamp, I., Malzahn, A., Hagemann, A., Carvajal, A. K., Slizyte, R., ... & Reitan, K. I. (2019). Growth and nutritional composition of the polychaete Hediste diversicolor (OF Müller, 1776) cultivated on waste from land-based salmon smolt aquaculture. Aquaculture502, 232-241.
Wang, M., & Jeffs, A. G. (2014). Nutritional composition of potential zooplankton prey of spiny lobster larvae: a review. Reviews in Aquaculture6(4), 270-299.
Wassef, E. A., El-Sayed, A. F. M., & Sakr, E. M. (2013). Pterocladia (Rhodophyta) and Ulva (Chlorophyta) as feed supplements for European seabass, Dicentrarchus labrax L., fry. Journal of applied phycology25(5), 1369-1376.
Ween, O., Stangeland, J. K., Fylling, T. S., & Aas, G. H. (2017). Nutritional and functional properties of fishmeal produced from fresh by-products of cod (Gadus morhua L.) and saithe (Pollachius virens). Heliyon3(7), e00343.
Weiss, M., & Buck, B. H. (2017). Partial replacement of fishmeal in diets for turbot (Scophthalmus maximus, Linnaeus, 1758) culture using blue mussel (Mytilus edulis, Linneus, 1758) meat. Journal of Applied Ichthyology33(3), 354-360.
Westendorf, M. L. (2000). Food waste as animal feed: an introduction. Food waste to animal feed, 3-16. DOI:10.1002/9780470290217
Weththasinghe, P., Hansen, J. Ø., Nøkland, D., Lagos, L., Rawski, M., & Øverland, M. (2021). Full-fat black soldier fly larvae (Hermetia illucens) meal and paste in extruded diets for Atlantic salmon (Salmo salar): Effect on physical pellet quality, nutrient digestibility, nutrient utilization and growth performances. Aquaculture530, 735785.
Wong, M. H., Mo, W. Y., Choi, W. M., Cheng, Z., & Man, Y. B. (2016). Recycle food wastes into high quality fish feeds for safe and quality fish production. Environmental Pollution, 219, 631–638. https://doi. org/10.1016/j.envpol.2016.06.035
Woods, C. M. (2009). Caprellid amphipods: an overlooked marine finfish aquaculture resource? Aquaculture 289(3–4):199–211.
World Commission on Environment and Development. (1987). Our common future. Oxford, England: Oxford University Press.
Wu, X., He, K., Velickovic, T. C., & Liu, Z. (2021). Nutritional, functional, and allergenic properties of silkworm pupae. Food Science & Nutrition9(8), 4655-4665.
Wu, L. C., Ho, J. A. A., Shieh, M. C., & Lu, I. W. (2005). Antioxidant and antiproliferative activities of Spirulina and Chlorella water extracts. Journal of agricultural and food chemistry53(10), 4207-4212.
Xiao, Y., Bai, X., Ouyang, Z., Zheng, H., & Xing, F. (2007). The composition, trend and impact of urban solid waste in Beijing. Environmental monitoring and assessment135(1), 21-30.
Xiong, J., Jin, M., Yuan, Y., Luo, J. X., Lu, Y., Zhou, Q. C., ... & Tan, Z. L. (2018). Dietary nucleotide‐rich yeast supplementation improves growth, innate immunity and intestinal morphology of Pacific white shrimp (Litopenaeus vannamei). Aquaculture Nutrition24(5), 1425-1435.
Xu, X., Ji, H., Belghit, I., & Sun, J. (2020). Black soldier fly larvae as a better lipid source than yellow mealworm or silkworm oils for juvenile mirror carp (Cyprinus carpio var. specularis). Aquaculture527, 735453.
Xue, S., Mao, Y., Li, J., Zhu, L., Fang, J., & Zhao, F. (2018). Life history responses to variations in temperature by the marine amphipod Eogammarus possjeticus (Gammaridae) and their implications for productivity in aquaculture. Hydrobiologia814(1), 133-145.
Xue, S., Ding, J., Li, J., Jiang, Z., Fang, J., Zhao, F., & Mao, Y. (2021). Effects of live, artificial and mixed feeds on the growth and energy budget of Penaeus vannameiAquaculture Reports19, 100634.
Yi, X., Li, J., Xu, W., Zhou, H., Smith, A. A., Zhang, W., & Mai, K. (2015). Shrimp shell meal in diets for large yellow croaker Larimichthys croceus: Effects on growth, body composition, skin coloration and anti-oxidative capacity. Aquaculture441, 45-50.
Yi, L., Lakemond, C. M., Sagis, L. M., Eisner-Schadler, V., van Huis, A., & van Boekel, M. A. (2013). Extraction and characterisation of protein fractions from five insect species. Food Chemistry, 141(2013), 3341–3348.
Yin, G., Li, W., Lin, Q., Lin, X., Lin, J., Zhu, Q., ... & Huang, Z. (2014). Dietary administration of laminarin improves the growth performance and immune responses in Epinephelus coioides. Fish & shellfish immunology41(2), 402-406.
Yue, K., & Shen, Y. (2022). An overview of disruptive technologies for aquaculture. Aquaculture and Fisheries7(2), 111-120.
Zu Ermgassen, E. K., Phalan, B., Green, R. E., & Balmford, A. (2016). Reducing the land use of EU pork production: where there’s swill, there’sa way. Food policy58, 35-48.