Benefits of phosholipids in aquafeed development: a review

Document Type : Review


1 Higher Institution Center of Excellence (HICOE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala, Nerus, Terengganu, Malaysia.

2 Higher Institution Center of Excellence (HICOE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia.

3 Tripleves Venture Sdn. Bhd., Kampung Baru Sungai Buloh, Selangor, Malaysia.

4 Environmental Science Center, Qatar University, Doha, Qatar.

5 Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China.


Fish oil (FO) is the main source of lipid in aquafeed, but its use has become very unsustainable due to over-exploitation, scarcity and high cost. Plant oil has been proposed as an alternative to FO, but they are less digestible and not rich in fatty acids. In addition, larval and juvenile fish are unable to synthesize sufficient phospholipids (PLs) for their metabolic need. Hence, the necessity to supplement PLs in their diets. This review describes the application and beneficial impact of dietary PLs in aquafeed. PLs are an essential component of aquafeed as they supply energy for metabolic activities and enhance digestion and absorption of other dietary lipids. Plant-based PLs such as soy lecithin serve as an emulsifier
that helps lipid catabolism by facilitating enzymatic hydrolysis in the fish’s digestive system, besides improving nutrient absorption, growth and health. Studies on farm animals have confirmed the positive effects of PLs. Although literature on aquafeed application is limited, growth and health of farmed fish and crustaceans. The use of PLs in aquaculture is set to increase as both feed producers and farmers seek to maximize production through efficient feed utilization and ensure sustainability in delivering quality fish to consumers.

Graphical Abstract

Benefits of phosholipids in aquafeed development: a review


  • The use of phospholipids in aquafeed is increasing and gaining wider consideration.
  • Dietary phospholipids enhance digestion and absorption of other lipids in aquaculture species.
  • Dietary phospholipids are vital for growth and good health of aquaculture stocks.
  • Hydrolyzed phospholipids are more efficient in aquatic feed utilization and growth compared with normal phospholipids.


Adams, S.M., Ham, K.D., Greeley, M.S., LeHew, R.F., Hinton, D.E. and Saylor, C.F., 1996. Downstream gradients in bioindicator responses: point source contaminant effects on fish health. Can. J. Fish. Aquat. Sci. 53, 2177-2187.
Adel, M., Gholaghaie, M., Khanjany, P. and Citarasu, T., 2017. Effect of dietary soybean lecithin on growth parameters, digestive enzyme activity, antioxidative status and mucosal immune responses of common carp (Cyprinus carpio). Aquac. Nutr. 23, 1145-1152.
Adhami, B., Amirkolaei, A.K., Oraji, H., Kazemifard, M. and Mahjoub, S., 2021a. Effects of lysophospholipid on rainbow trout (Oncorhynchus mykiss) growth, biochemical indices, nutrient digestibility and liver histomorphometry when fed fat powder diet. Aquac. Nutr. 27, 1779-1788.
Adhami, B., Keramat Amirkolaie, A., Oraji, H., Kazemifard, M. and Mahjoub, S., 2021b. Effects of lysophospholipid on utilizing different sources and levels of carbohydrate in rainbow trout (Oncorhynchus mykiss) diet. Aquat. Anim. Nutr. 6, 51-64.
Arslan, M., Rinchard, J., Dabrowski, K. and Portella, M.C., 2008. Effects of different dietary lipid sources on the survival, growth, and fatty acid composition of South American catfish, Pseudoplatystoma fasciatum, surubim, juveniles. J. World Aquac. Soc. 39, 51-61.
Balfry, S.K. and Higgs, D.A., 2001. Influence of dietary lipid composition on the immune system and disease resistance of finfish. Nutr. Fish Health. 12, 213–234.
Balito-Liboon, J.S., Ferdinand, R., Traifalgar, M., Pagapulan, M.J.B.B., Mameloco, E. J. G., Temario, E. E. and Corre Jr, V. L., 2018. Dietary soybean lecithin enhances growth performance, feed utilization efficiency and body composition of early juvenile Milkfish, Chanos chanos. Isr. J. Aquac. – Bamidgeh. 70, 1-9.
Bingkun, Z., Li, H., Dongqin, Z., Yuming, G. and Adriana, B., 2011. Effect of fat type and lysophosphatidylcholine addition to broiler diets on performance, apparent digestibility of fatty acids and apparent metabolisable energy content. Anim. Feed Sci. Technol. 163, 177-184.
Boontiam, W., Jung, B. and Kim, Y.Y., 2017. Effects of lysophospholipid supplementation to lower nutrient diets on growth performance, intestinal morphology, and blood metabolites in broiler chickens. Poult. Sci. 96, 593-601.
Bruning, B.A., 2009. Collective short wavelength dynamics in composite phospholipid model membranes with inelastic neutron scattering. PhD Thesis. Georg-August-Universit¨, Gottingen. 167p.
Caballero, M.J., Izquierdo, M.S., Kjørsvik, E., Fernandez, A.J. and Rosenlund, G., 2004. Histological alterations in the liver of sea bream, Sparus aurata L., caused by short-or long-term feeding with vegetable oils. Recovery of normal morphology after feeding fish oil as the sole lipid source. J. Fish Dis. 27, 531–541.
Campos, I., Matos, E., Maia, M.R., Marques, A. and Valente, L.M., 2019. Partial and total replacement of fish oil by poultry fat in diets for European seabass (Dicentrarchus labrax) juveniles: Effects on nutrient utilization, growth performance, tissue composition and lipid metabolism. Aquac. 502, 107-120.
Chapman, M.J., Goldstein, S., Mills, G.L. and Leger C., 1978. Distribution and characterization of the serum lipoproteins and their apoproteins in the rainbow trout (Salmo gairdneri). Biochem. 17, 4455-4464.
Du, Z.Y., Clouet, P., Huang, L.M., Degrace, P., Zheng, W.H., He, J.G. and Liu, Y.J., 2008. Utilization of different dietary lipid sources at high level in herbivorous grass carp (Ctenopharyngodon idella): Mechanism related to hepatic fatty acid oxidation. Aquac. Nutr. 14, 77–92.
El-Bacha, T. and Torres, A.G., 2016. PLs: physiology. In: Benjamin C, Paul M.F, Fidel T. (Eds.), Encyclopedia of Food and Health. Academic Press, pp. 352-359.
El‐Sayed, A.F.M., Tammam, M.S. and Makled, S.O., 2021. Lecithin‐containing bioemulsifier boosts growth performance, feed digestion and absorption and immune response of adult Nile tilapia (Oreochromis niloticus). Aquac. Nutr. 27, 757-770.
Furné, M., García-Gallego, M., Hidalgo, M.C., Morales, A.E., Domezain, A., Domezain, J. and Sanz, A., 2008. Effect of starvation and refeeding on digestive enzyme activities in sturgeon (Acipenser naccarii) and trout (Oncorhynchus mykiss). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 149, 420-425.
Furne, M., Hidalgo, M.C., Lopez, A., Garcia-Gallego, M., Morales, A.E., Domezain, A., Domezaine, J. and Sanz, A., 2005. Digestive enzyme activities in Adriatic sturgeon Acipenser naccarii and rainbow trout Oncorhynchus mykiss. A comparative study. Aquac. 250, 391-398.
Gibbs, V.K., Watts, S.A., Lawrence, A.L. and Lawrence, J.M., 2009. Dietary PLs affect growth and production of juvenile sea urchin Lytechinus variegatus. Aquac. 292, 95-103.
Gisbert, E., Villeneuve, L., Zambonino-Infante, J.L., Quazuguel, P. and Cahu, C.L., 2005. Dietary PLs are more efficient than neutral lipids for long-chain polyunsaturated fatty acid supply in European sea bass Dicentrarchus labrax larval development. Lipids 40, 609–618.
Gunstone, F.D., 2011. The world's oils and fats. In: Turchini, G.M., Ng, W.-K., Tocher, D.R. (Eds.), Fish oil replacement and alternative lipid sources in aquaculture feeds. CRC Press, Boca Raton, FL, pp. 61–98.
Honjoh, T., Kunazawa, H., Oosaki, M., Yonemura, T. and Kashiwa, G., 1967. Effects of oxidized fish oils and added ethoxyquin on the culture of rainbow trout. Jpn. Oil Chem. Soc. 16, 135–137.
Hosseini, S.M., Nourmohammadi, R., Nazarizadeh, H. and Latshaw, J.D., 2018. Effects of lysolecithin and xylanase supplementation on the growth performance, nutrient digestibility and lipogenic gene expression in broilers fed low‐energy wheat‐based diets. J. Anim. Physiol. Anim. Nutr. (Berl). 102, 1564-1573.
Hou, Y., Yuan, Y., Lu, Y., Ma, H., Sun, P., Liang, X., Huo, Y. and Zhou, Q., 2016. Dietary soy lecithin requirement of the juvenile swimming crab (Portunus trituberculatus). J. Fish. China. 40, 1753-1764.
Hu, Y., Tan, B., Mai, K., Ai, Q., Zhang, L. and Zheng, S., 2011. Effects of dietary menhaden oil, soybean oil and soybean lecithin oil at different ratios on growth, body composition and blood chemistry of juvenile Litopenaeus vannamei. Aquac. Int. 19, 459-473.
Huang, Y., Xu, J., Sheng, Z., Chen, N. and Li, S., 2021. Integrated response of growth performance, fatty acid composition, antioxidant responses and lipid metabolism to dietary PLs in hybrid grouper (Epinephelus fuscoguttatus♀× E. lanceolatus♂) larvae. Aquac. 541, 736728.
Jafari, F., Noori, F., Agh, N., Estevez, A., Ghasemi, A., Alcaraz, C. and Gisbert, E., 2021. PLs improve the performance, physiological, antioxidative responses and, lpl and igf1 gene expressions in juvenile stellate sturgeon (Acipenser stellatus). Aquac. 541, 736809.
Jamali, H., Ahmadifard, N., Noori, F., Gisbert, E., Estevez, A. and Agh, N., 2019. Lecithin-enriched Artemia combined with inert diet and its effects on reproduction and digestive enzymes of Aequidens rivulatus
Aquac. 511, 734253.
Jaxion-Harm, J., 2021. Effects of dietary PLs on early stage Atlantic Salmon (Salmo salar) performance: A comparison among phospholipid sources. Aquac. 544, 737055.
Joshi, A., Paratkar, S.G. and Thorat, B.N., 2010. Modification of lecithin by physical, chemical and enzymatic methods. Eur. J. Lipid Sci. Technol. 108, 363–373.
Kanazawa, A., 1993. Essential PLs of fish and crustaceans. In: Kaushik, S.J., Luquet, P. (Eds.), Fish Nutrition in Practice. IV International Symposium on Fish Nutrition and Feeding, INRA, France. National Institute for Agricultural Research, pp. 519–530.
Kasper, C.S. and Brown, P.B., 2003. Growth improved in juvenile Nile tilapia fed phosphatidylcholine. N. Am. J. Aquac. 65, 39–43.
Khan, H.I., Madhubabu, E.P., Jannathulla, R., Ambasankar, K. and Dayal, J.S., 2018a. Effect of partial replacement of marine protein and oil sources in presence of lyso-lecithin in the diet of tiger shrimp Penaeus monodon Fabricius, 1978. Indian J. Fish. 65, 100-107.
Khan, H.I., Dayal, J.S., Ambasankar, K., Madhubabu, E.P., Jannathulla, R. and Rajaram, V., 2018b. Enhancing the dietary value of palm oil in the presence of lysolecithin in tiger shrimp, Penaeus monodon. Aquac. Int. 26: 509-522.
Kim, M.J., Hosseindoust, A.R., Choi, Y.H., Kumar, A., Jeon, S.M., Lee, S.H., Jung, B.Y., Kil, D.Y. and Chae, B.J., 2018. An evaluation of metabolizable energy content of main feed ingredients for growing pigs when adding dietary lysoPLs. Livest. Sci. 210, 99-103.
Kokou, F., Vasilaki, A., Nikoloudaki, C., Sari, A.B., Karalazos, V. and Fountoulaki, E., 2021. Growth performance and fatty acid tissue profile in gilthead seabream juveniles fed with different phospholipid sources supplemented in low-fish meal diets. Aquac. 544, 737052.
Kontara, E.K.M., Djunaidah, I.S., Coutteau, P. and Sorgeloos, P., 1998. Comparison of native, lyso and hydrogenated soybean phosphatidylcholine as phospholipid source in the diet of postlarval Penaeus japonicus Bate. Arch. Anim. Nutr. 51, 1-19.
Koven W.M., Kolkovski S., Tandler A., Kissil G.W. and Sklan D., 1993. The effect of dietary lecithin and lipase, as a function of age, on n-9 fatty acid incorporation in the tissue lipids of Sparus aurata larvae. Fish Physiol. Biochem. 10, 357-364.
Lall S.P., 2002. The minerals. J.E. Halver, R.W. Hardy (Eds.), Fish Nutrition (3rd ed.), Academic Press, San Diego, pp. 259-308.
Li, X.Y., Wang J.T., Han T., Hu S.X., Jiang Y.D. and Wang C.L., 2014. Effect of dietary PLs levels and sources on growth performance, fatty acid composition of the juvenile swimming crab, Portunus trituberculatus. Aquac. 430, 166-172.
Li, B., Li, Z., Sun, Y., Wang, S., Huang, B. and Wang, J., 2019. Effects of dietary lysolecithin (LPC) on growth, apparent digestibility of nutrient and lipid metabolism in juvenile turbot Scophthalmus maximus L. Aquac. Fish. 4, 61-66.
Li, H.T., Tian, L.X., Wang, Y.D. and Hu, Y.H., 2010b. Effects of lysolecithin on growth performance, body composition and hematological indices of hybrid tilapia (Oreochromis aureus × Oreochromis niloticus). J. Dalian Fish. Univ. 25, 143–146 (In Chinese with English abstract).
Li, H.X., Liu, W.B., Li, X.F., Wang, J.J., Liu, B. and Xie, J., 2010a. Effects of dietary choline-chloride, betaine and lysoPLs on the growth performance, fat metabolism and blood indices of crucian carp (Carassais auratus gibelio). J. Fish. China. 34, 292–299 (In Chinese with English abstract).
Li, S., Luo, X., Liao, Z., Liang, M., Xu, H., Mai, K. and Zhang, Y., 2022. Effects of Lysophosphatidylcholine on Intestinal Health of Turbot Fed High-Lipid Diets. Nutr. 14, 4398.
Li, X.F., Liu, W.B., Lu, K.L., Xu, W.N. and Wang, Y., 2012. Dietary carbohydrate/lipid ratios affect stress, oxidative status and non-specific immune responses of fingerling blunt snout bream, Megalobrama amblycephala. Fish Shellfish Immunol. 33, 316-323.
Liu, G., Ma, S., Chen, F., Gao, W., Zhang, W. and Mai, K., 2020. Effects of dietary lysolecithin on growth performance, feed utilization, intestinal morphology and metabolic responses of channel catfish (Ictalurus punctatus). Aquac. Nutr. 26, 456-465.
Longmuir, L.T., 2002. Lecithin. In: Hubbard, A.T. (Ed.), Encyclopedia of surface and colloid science Marcel Dekker Inc., New York, USA, p. 2997-3006.
Lu, K.L., Xu, W.N., Li, X.F., Liu, W.B., Wang, L.N. and Zhang, C.N., 2013. Hepatic triacylglycerol secretion, lipid transport and tissue lipid uptake in blunt snout bream (Megalobrama amblycephala) fed high-fat diet. Aquac. 408, 160-168.
Lu, Z., Yao, C., Tan, B., Dong, X., Yang, Q., Liu, H., Zhang, S. and Chi, S., 2022. Effects of Lysophospholipid Supplementation in Feed with Low Protein or Lipid on Growth Performance, Lipid Metabolism, and Intestinal Flora of Largemouth Bass (Micropterus salmoides). Aquac. Nutr. 2022.
Maldonado-Valderrama, J., Wilde, P., Macierzanka, A. and Mackie, A., 2011. The role of bile salts in digestion. Adv. Colloid Interface Sci. 165, 36–46.
Melegy, T., Khaled, N.F., El-Bana, R. and Abdellatif, H., 2010. Dietary fortification of a natural biosurfactant, lysolecithin in broiler. Afr. J. Agric. Res. 5, 2886-2892.
McClements, D.J. and Gumus, C.E., 2016. Natural emulsifiers—Biosurfactants, PLs, biopolymers, and colloidal particles: Molecular and physicochemical basis of functional performance. Adv. Colloid Interface Sci. 234, 3-26.
Mohammadigheisar, M., Kim, H.S. and Kim, I.H., 2018. Effect of inclusion of lysolecithin or multi-enzyme in low energy diet of broiler chickens. J. Appl. Anim. Res. 46, 1198–1201.
Morais, S., Caballero, M.J., Conceiçao, L.E., Izquierdo, M.S. and Dinis, M.T., 2006. Dietary neutral lipid level and source in Senegalese sole (Solea senegalensis) larvae: effect on growth, lipid metabolism and digestive capacity.           Comp. Biochem. Physiol. B, Biochem. Mol. Biol. 144, 57-69. 
Mu, H., Shen, H.H., Liu, J.H., Xie, F.L., Zhang, W.B. and Mai, K.S., 2018. High level of dietary soybean oil depresses the growth and anti-oxidative capacity and induces inflammatory response in large yellow croaker Larimichthys crocea. Fish Shellfish Immunol. 77, 465–473.
Niu, J., Liu, Y.J., Lin, H.Z., Mai, K.S., Yang, H.J., Liang, G.Y. and Tian, L.X., 2011a. Effects of dietary chitosan on growth, survival and stress tolerance of postlarval shrimp, Litopenaeus vannamei. Aquac. Nutr. 17, 406-412.
Niu, J., Liu, Y.J., Tian, L.X., Mai, K.S., Lin, H.Z., Chen, X., Yang, H.J. and Liang, G.Y., 2011b. Influence of dietary PLs level on growth performance, body composition and lipid class of early post larval Litopenaeus vannamei. Aquac. Nutr. 17, 615-621.
Olsen, R.E., Myklebust, R., Kaino, T. and Ringø, E., 1999. Lipid digestibility and ultrastructural changes in the enterocytes of Arctic char (Salvelinus alpinus L.) fed linseed oil and soybean lecithin. Fish Physiol. Biochem. 21, 35–44.
Perez-Casanova, J.C., Murray, H.M., Gallant, J.W., Ross, N.W., Douglas, S.E. and Johnson, S.C., 2006. Development of the digestive capacity in larvae of haddock (Melanogrammus aeglefinus) and Atlantic cod (Gadus morhua). Aquac. 251(2-4), 377-401.
Poston, H.A., 1990. Effect of body size on growth, survival, and chemical composition of Atlantic salmon fed soy lecithin and choline. Prog. Fish C. 52, 226–230.
Rana, K.J., Siriwardena, S., Hasan, M.R., 2009. Impact of rising feed ingredient prices on aquafeeds and aquaculture production. Fisheries and Aquaculture Technical Paper 541. Food and Agriculture Organization of the United Nations.
Reynier, M.O., Lafont, H., Crotte, C., Sauve, P. and Gerolami, A., 1985. Intestinal cholesterol uptake: comparison between mixed micelles containing lecithin or lysolecithin. Lipids. 20, 145-150. 
Saleh, R., Betancor, M.B., Roo, J., Hernandez‐Cruz, C.M., Moyano, F.J. and Izquierdo, M., 2013. Optimum soybean lecithin contents in microdiets for gilthead seabream (S parus aurata) larvae. Aquac. Nutr. 19, 585-597.
Saleh, R., Betancor, M.B., Roo, J., Benítez‐Dorta, V., Zamorano, M.J., Bell, J.G. and Izquierdo, M., 2015. Effect of krill PLs versus soybean lecithin in microdiets for gilthead seabream (S parus aurata) larvae on molecular markers of antioxidative metabolism and bone development. Aquac. Nutr. 21, 474-488.
Sargent, J.R., Tocher, D.R. and Bell, J.G., 2002. The lipids. In J. E. Halver, and R. W. Hardy (Eds.), Fish nutrition. SanDiego, CA: Academic Press, 3rd ed.; pp. 181– 257. 
Seiliez, I., Bruant, J.S., Zambonino Infante, J.L., Kaushik, S. and Bergot, P., 2006. Effect of dietary phospholipid level on the development of gilthead sea bream (Sparus aurata) larvae fed a compound diet. Aquac. Nutr. 12, 372-378.
Sun, N., Chen, J., Wang, D. and Lin, S., 2018. Advance in food-derived PLs: Sources, molecular species and structure as well as their biological activities. Trends Food Sci. Technol. 80, 199-211.
Taghavizadeh, M., Shekarabi, S.P.H., Mehrgan, M.S. and Islami, H.R., 2020. Efficacy of dietary lysoPLs (Lipidol™) on growth performance, serum immuno-biochemical parameters, and the expression of immune and antioxidant-related genes in rainbow trout (Oncorhynchus mykiss). Aquac. 525, 735315.
Tocher, D.R., 1995. Glycerophospholipid metabolism. In Biochemistry and molecular biology of fishes. 4, 119-157.
Tocher, D.R., Bendiksen, E.Å., Campbell, P.J. and Bell, J.G., 2008. The role of PLs in nutrition and metabolism of teleost fish. Aquac. 280, 21–34.
Tocher, D.R., 2003. Metabolism and functions of lipids and fatty acids in teleost fish. Rev. Fish. Sci. Aquac. 11, 107-184.
Uyan, O., Koshio, S., Ishikawa, M., Yokoyama, S., Uyan, S., Ren, T. and Hernandez, L.H.H., 2009. The influence of dietary phospholipid level on the performances of juvenile amberjack, Seriola dumerili, fed non‐fishmeal diets. Aquac. Nutr. 15, 550-557.
Van Hoogevest, P. and Wendel, A., 2014. The use of natural and synthetic PLs as pharmaceutical excipients. Eur. J. Lipid Sci. Technol. 116, 1088-1107.
Van Nieuwenhuyzen, W., 2015. Production and Utilization of Natural PLs. In Polar Lipids, (pp. 245-276). Elsevier.
Wang, J.T., Song, J.Y., Li, H.T., Xiao, X.W., Sun, M.M., and Wan, W. J., 2009. Effect of emulsifier on growth performance and blood biochemical index in common carp Cyprinus carpio var. Jian. J. Dalian Fish. Univ. 24, 257-260.
Wang, S., Zhang, Y., Xie, R., Zhang, N., Zhang, H., Chen, N. and Li, S., 2022. Effects of dietary phospholipids on growth performance, fatty acid composition and lipid metabolism of early juvenile largemouth bass (Micropterus salmoides). Aquac. Res. 53, pp.5628-5637.
Weirich, C.R., Reigh, R.C., 2001. Dietary lipids and stress tolerance of larval fish. In: Lim, C., Webster, C.D. (Eds.), Nutrition and Fish Health. Food Products Press, NY, pp. 301–312.
Weng, M., Zhang, W., Zhang, Z., Tang, Y., Lai, W., Dan, Z., Liu, Y., Zheng, J., Gao, S., Mai, K. and Ai, Q., 2022. Effects of dietary lysolecithin on growth performance, serum biochemical indexes, antioxidant capacity, lipid metabolism and inflammation-related genes expression of juvenile large yellow croaker (Larimichthys crocea). Fish Shellfish Immunol. 128, 50-59.
Xiao, W., Jiang, W., Feng, L., Liu, Y., Wu, P., Jiang, J., Zhang, Y. and Zhou, X., 2019. Effect of dietary enzyme‐treated soy protein on the immunity and antioxidant status in the intestine of juvenile Jian carp (Cyprinus carpio var. Jian). Aquac. Res. 50, 1411-1421.
Xie Meizhen., 2019. PLs, Editor(s): Laurence Melton, Fereidoon Shahidi, Peter Varelis, Encyclopedia of Food Chemistry, Academic Press, 2019, pp 214-217.
Xu, H., Luo, X., Bi, Q., Wang, Z., Meng, X., Liu, J., Duan, M., Wei, Y. and Liang, M., 2022. Effects of dietary lysophosphatidylcholine on growth performance and lipid metabolism of juvenile turbot. Aquac. Nutr. 3515101. 
Zampiga, M., Meluzzi, A. and Sirri, F., 2016. Effect of dietary supplementation of lysoPLs on productive performance, nutrient digestibility and carcass quality traits of broiler chickens. Ital. J. Anim. Sci. 15, 521– 528. 
Zhang, W., Wang, F., Tan, B., Dong, X., Zhang, H., Chi, S., Liu, H., Zhang, S. and Yang, Q., 2019. Effect of the dietary phosphatidylcholine at different growth stages of Pacific white shrimps, Litopenaeus vannamei. Aquac. Nutr. 25, 555-566.
Zhao, J., Ai, Q., Mai, K., Zuo, R. and Luo, Y., 2013. Effects of dietary PLs on survival, growth, digestive enzymes and stress resistance of large yellow croaker, Larmichthys crocea larvae. Aquac. 410, 122–128.
Zhao, P.Y. and Kim, I.H., 2017. Effect of diets with different energy and lysoPLs levels on performance, nutrient metabolism, and body composition in broilers. Poult. Sci. 96, 1341–1347.
Zhou, D., Rakariyatham, K., 2019. PLs, Editor(s): Laurence Melton, Fereidoon Shahidi, Peter Varelis, Encyclopedia of Food Chemistry, Academic Press. pp. 546-549.